

Cirq: A Python Framework for Creating,
Editing, and Invoking Quantum Circuits

DESIGN DOCUMENT

Team 8

Name Role

Victory Omole Project Client

Akhilesh Tyagi Project Sponsor

Aj Hanus Organizer, Researcher, Developer

Andrew Hancock Researcher, Developer

Austin Garcia Researcher, Developer

Jacob Shedenhelm Researcher, Developer

Jordan Cowen Researcher, Developer

Calista Carey Researcher, Developer

sdmay20-08@iastate.edu

https://sdmay20-08.sd.ece.iastate.edu

https://sdmay20-08.sd.ece.iastate.edu/

Executive Summary

Development Standards & Practices Used
For this project, we will be using VSCode to write python code and py tests. We will be working
in Agile sprints starting in the second half of the semester when we begin designing writing the
functions for each of the quantum computing gates.

Summary of Requirements

1. Implement the functionality to output a cirq.Circuit to QUIL
○ https://github.com/quantumlib/Cirq/issues/2386

2. Complete smaller issues assigned to group

Applicable Courses from Iowa State University Curriculum

● CS 309 - Agile practices, GitHub experience
● Math 207 - Linear Algebra
● CS 104 - Python course

New Skills/Knowledge acquired that was not taught in courses
● Knowledge of the Quantum Computing
● Knowledge of Google’s Cirq Quantum Computing Repository
● Python programming language

sdmay20-08 2

https://github.com/quantumlib/Cirq/issues/2386

Table of Contents

1. Introduction 5
1.1 Acknowledgement 5
1.2 Problem and Project Statement 5
1.3 Requirements 6
1.4 Intended Users and Uses 6
1.5 Assumptions and Limitations 6
1.6 Expected End Product and Deliverables 7

2. Specifications and Analysis 9
2.1 Proposed Design 9
2.2 Development Process 10
2.3 Design Plan 11

3. Statement of Work 12
3.1 Previous Work And Literature 12
3.2 Technology Considerations 12
3.3 Task: Export as QUIL 12
3.4 Possible Risks And Risk Management 13
3.5 Project Proposed Milestones and Evaluation Criteria 13
3.6 Project Tracking Procedures 14
3.7 Expected Results and Validation 14

4. Project Timeline, Estimated Resources, and Challenges 15
4.1 Project Timeline 15
4.2 Feasibility Assessment 16
4.3 Personnel Effort Requirements 16
4.4 Other Resource Requirements 17
4.5 Financial Requirements 17

5. Testing and Implementation 18
5.1 Interface Specifications 18
5.2 Hardware and software 18
5.3 Functional Testing 18
5.4 Non-Functional Testing 18
5.5 Process 18
5.6 Results 19

sdmay20-08 3

6. Closing Material 20
6.1 Conclusion 20
6.2 References 20
6.3 Appendices 20

sdmay20-08 4

1. Introduction

1.1 Acknowledgement
We would like to thank Victory Omole, our client, and the rest of the Cirq developers for
providing us with the Cirq repository and a good base to begin our implementation. Our client
has also provided us with significant assistance for gaining knowledge in Quantum Computing
by providing us many lecture notes and other material. He was also very prompt in answering
any questions we had for him which we appreciate greatly. We would also like to thank Akhilesh
Tyagi, our advisor. He helped coordinate our project when we were having difficulty early in the
process and was prompt when we requested meetings to discuss our project.

1.2 Problem and Project Statement
Cirq is a programming language for quantum computing. QUIL is an instruction set architecture
being developed by Rigetti Computing for quantum processors. Our main goal is to translate
quantum circuits designed in Cirq to QUIL. This would allow people to use Cirq-designed
quantum circuits in programs/machines that only run QUIL such as the QVM (Quantum Virtual
Machine) designed by Rigetti. Cirq already has the ability to translate to other quantum protocols
such as QASM (Quantum Assembly Language).

Using QASM as an example, our group can see that we will need to implement translation for
each of the standard QUIL gates. We plan on completing a well working implementation with
clean code and thorough documentation. During this process we plan to gain a deeper knowledge
of Cirq, QUIL, and quantum computing in general. As seen in Figure 1, Cirq was designed to be
able to output to both Quantum Engines and Quantum Hardware so the QUIL implementation
will increase Cirq’s breadth to a larger range of the quantum computing industry.

Figure 1: Illustrates how Cirq interacts with the real world

sdmay20-08 5

1.3 Requirements
1. Implement issue #2386 in the Cirq repository (https://github.com/quantumlib/Cirq):

For this requirement, we need to implement the file, quil_output.py. Cirq allows for
conversions between different Quantum Computing circuit specifications, and they want
to allow a circuit to be exported as QUIL. This will be similar to how Cirq already
outputs QASM.
We will be using python and coding in Visual Studio Code.

2. Complete smaller issues:
For the first part of the first semester, our group members will be completing smaller
issues in the Cirq repository in order to become more familiar with the Cirq repository
and the code syntax they commonly use.

1.4 Intended Users and Uses
The intended user for our QUIL translation is anyone who uses Cirq to create their quantum
circuits and wants to export their circuit to QUIL. Many scientists use quantum computers to
conduct virtual experiments, and they may want to translate their circuits into QASM or QUIL
[3]. Cirq already has QASM implemented, so it is our job to give the users the option to export to
QUIL as well.

Figure 2: Diagram to show intended use of QUIL

1.5 Assumptions and Limitations
Assumptions:

● The current code in the repo does not break.
● Current code can withstand large data tests.
● Our code will be reviewed by professionals that understand Cirq and quantum computing

sdmay20-08 6

https://github.com/quantumlib/Cirq

● The automated testing and format checking system function correctly
Limitations:

● Right now, it is hard to make a quantum computer on a large scale [3].
● Currently have minimal knowledge of Quantum Computing.
● Inexperienced with Cirq codebase
● Not a 1-to-1 relationship as to how circuits in Cirq are used and how QUIL must be

exported. We will have to implement new Cirq gates to be compatible with QUIL.

1.6 Expected End Product and Deliverables
We are working for the Google repository, Cirq, so it is important that we keep our client and other
developers up to date with the work our group does throughout the entire process. Because of this, we will
test and push often, but we will be working in monthly sprints. All work for the sprint should be
completed by the last day of the month (except December), but we should always be updating the
repository and documentation throughout each month.

First Semester (completed in order):

● By the end of September, all group members should have started researching and studying
Quantum Computing. The members that have not had previous experience with python need to
start learning the language. Cirq works exclusively in python, so it’s crucial all group members
know the language prior to starting the actual implementation.

● Throughout the month of October, smaller issues will be assigned to group members in order to
familiarize themselves with the Cirq repository. All group members should have all smaller
repository issues that were assigned completed. Along with this, all group members should
research QUIL and gain a thorough understanding of the similarities and differences it shares
with Cirq.

● By the end of November, we will have begun designing a basic parser and working on converting
the gates to QUIL. We will continue to look into the commonalities between Cirq and QUIL..

● This month is shorter due to the fact that there are finals and winter break beginning this month.
In December, all official roles will be assigned to the project. Everyone will know which specific
part they are working on in the project. After completing the design, we will update the
documentation in the repository to include our design choices and diagrams we created.

Second Semester:

● By the end of January, we will have begun the first implementation of our design. We should
have a good base of quil_output.py complete. The initial program should be almost ready to be
tested.

● By the end of February, our first implementation should be completed. We will begin testing the
file and simulating test cases. We will make improvements to our initial code as needed, and get
ready to optimize the solution.

● By the end of March, we should begin optimizing our solution. As well, if our work on
quil_output.py is complete, we will work on other issues within the repo. Having the experience

sdmay20-08 7

that we will gain throughout the previous months while working on Cirq will be very beneficial at
this stage.

● By the end of April, we should be ready for the release of the final product. The first part of the
month will be spent heavily testing the end program and fine tuning our changes. We will push
our final product on April 30th including any changes to the documentation that needs to be
made.

sdmay20-08 8

2. Specifications and Analysis

2.1 Proposed Design
For our proposed design, we are modeling it off of a comment that was made about the
implementation of outputting to QASM format. The general structure is the following:

- Each gate has a private function that returns itself as it would be written in QUIL syntax.
- There is a parser for the Cirq circuit that will iterate through each gate and call the

function that should return QUIL syntax.

The parser should live in it’s own file with other necessary methods. Each gate’s translation
function should live in that gates class. We are currently in the stage of identifying what is
supported by QUIL so that we know what will translate from Cirq and we can adjust for what
currently will not translate.

The standards required for our project are that all tests in the Cirq repository pass and that all the
code that we create has full code coverage with tests. We also signed a contributor agreement
license which means that all the code we submit to the Cirq repository is open-source and that
Cirq has permission to use and redistribute our contributions as part of the project.

One of the IEEE standards that applies to our project is Software Reviews and Audits. This
standard defines five different types of reviews that we can choose to conduct when we start
developing the project next semester. We find this standard important as we will need to know
the best type of review to hold as we start progressing: management reviews, technical reviews,
inspections, walk-throughs, and audits. The standard goes into depth of the procedure required
for each, which will then make it easier for us to determine which to choose.

We also found that the Software Testing, an IEEE Standard, also applies to our project. This
standard will help us outline how to set up our tests. As can be found in the documentation for
the Cirq repository, current standards have already been set up for the code that has been written.
We have identified that the standards outlined in the documentation are in line with the IEEE
standard that we read about. The bullet that we found most intriguing was the “Coverage”
section. This section explains that the Cirq repository should have 100% code coverage with
tests. This means that all of the code we write for QUIL need to have tests that are run. We also
need to make sure that all of the tests continue to pass after we are finished with our project.

sdmay20-08 9

https://github.com/quantumlib/cirq/blob/master/CONTRIBUTING.md#code-testing-standards

Table 1: Displays Non-Functional and Functional Requirements

Non-functional Requirements Functional Requirements

Performance- Our parser should be able to work
efficiently with larger circuits.

Correct translation- Our implementation must
correctly translate Cirq circuits. They must be
usable by programs or machines that accept QUIL

Supports all gates- We should be able to handle
any gates that Cirq could use in a circuit and if not
gracefully report an error in translation

Be used for virtual experiments- Quantum
Computing is often used for simulation of
experiments, so our implementation will need to
be able to withstand any sort of experimentation
that is conducted.

2.2 Development Process
Our team plans to work with an Agile mindset. Each week we will give each team member the
tasks they need to complete for the week and we will communicate through a meeting or group
message if we can not find a meeting time for that week. Section 1.6 outlines the deliverables we
will be working towards throughout the semester and our tasks each week will be assigned to
lead us towards each month’s goal.

In Figure 3, we have outlined the class that we plan to implement. This class can be passed the
operations, qubits, a header, the precision, and version. The class will then output a string
representation of the circuit in QUIL format. This class will also utilize the “__quil__” functions
we are adding to each of the standard QUIL gates

Figure 3: Outline for the QuilOutput class we are implementing

sdmay20-08 10

2.3 Design Plan
Our design plan is to model the architecture of our code off of the code already present within
the Cirq code base. This will provide easier understanding to the current people working on Cirq
as well as new people joining the project. The largest constraint within our project is to
implement as much cross conversion functionality as possible between Cirq and QUIL. We will
have to come up with a large number of tests covering a variety of quantum circuit types to be
converted. The most important use-case of our project is that we consistently output QUIL
specification that can be regenerated in Cirq and can be implemented wherever the Cirq
repository could be used. Because Cirq is meant for near-term quantum computing, we intend to
ensure that the parser we choose works well for this technology.

To approach the issue, we plan to separate the project into three pull requests, each with a major
section of the work. These pull requests will be as follows:

1. Implement cirq output for Standard QUIL Gates
2. Implement cirq output for Non-Standard Gates
3. Implement cirq output for Control flow and Measurements

The design plan is outlined, including different Non-Standard and Standard Gates as well as the
control flow and measurements that will be added, in 6.3 Appendices. Each page is a markdown
document that we created and added to the Cirq repository issue.

sdmay20-08 11

3. Statement of Work

3.1 Previous Work And Literature
Cirq contributors have already done a decent amount of work on a similar task of converting
between Cirq circuits and QASM. We will be modeling our work closely after the QASM
conversion code. Obviously the output will be different but we will structure the code similarly
but using QUIL.

QUIL is “an abstract machine architecture for classical/quantum computations---including
compilation---along with a quantum instruction language called QUIL for explicitly writing
these computations. With this formalism, we discuss concrete implementations of the machine
and non-trivial algorithms targeting them. The introduction of this machine dovetails with
ongoing development of quantum computing technology, and makes possible portable
descriptions of recent classical/quantum algorithms.” [6].

3.2 Technology Considerations
Since Cirq is built with Python, the only possible option to complete our project involves
building our solution with Python. All work towards deliverables will be in Python using the
current Cirq features. To run and test our work, we will use a Linux Virtual Machine. We will be
using GitHub for all project management.

3.3 Task: Export as QUIL
Our project can be split into the following tasks:

● Learning Quantum Computing and Python
● Complete initial issues to familiarize ourselves with Cirq
● Study the QASM output, and determine how we can model QUIL closely to this sort of

export function
● Assign official roles to everyone
● Implement file quil_output.py
● Test and edit the output file
● Optimize work up to this point
● Release final result for implementation into Cirq

sdmay20-08 12

3.4 Possible Risks And Risk Management
Skill Training Time: Since our team is unfamiliar with quantum computing concepts and some
individuals are unfamiliar with Python, the time before being able to fully jump into
development on the main deliverable may be significant. A way to reduce this risk may be to
implement checkpoints for all members to have viewed a certain number of lectures by.

Software Updates: Any updates to the Cirq platform or any third party software being used by
our team may trigger setbacks that could halt development. This is an accepted risk with any
software project.

Scheduling Conflicts: This project spans across two semesters with six college seniors
attempting to finish their degrees. Thus, varying schedules and course loads could have a
significant impact on the project, especially around midterms and final exams. The best way to
reduce this risk is to ensure all team members are in constant communication regarding their
capability to contribute to the project at any one time.

3.5 Project Proposed Milestones and Evaluation Criteria
Our key milestones are as follows:

● Complete Quantum Computing and Python learning objectives; evaluation in an as
needed basis.

● Complete initial issues to familiarize ourselves with Cirq; initial issues have been closed.
● Study qasm_output.py and determine how QUIL can be modeled similarly; pick the gates

we need to include in our design
● Complete official role assignment; each team member has an assigned role.
● Complete initial implementation of quil_output.py; new circuit export function has been

translated into Cirq but still requires testing and debugging.
● Complete testing and revision of the file; the project is fully functional.
● Complete optimization; code has been cleaned, commented, and performance is

optimized for implementation in Cirq.
● Release final result for implementation into Cirq; the project is fully functional and

running within the Cirq framework.

sdmay20-08 13

3.6 Project Tracking Procedures
Each group member has been assigned to a pull request to implement during this project
(assignments shown below). Cirq has permission to use and redistribute our contributions as
part of the project.

Table 2: Pull Request Assignments for Group Member’s

Pull Request Members

Implement cirq output for Standard QUIL Gates Calista, Jake

Implement cirq output for Non-Standard Gates Jordan, Andrew

Implement cirq output for Control flow and Measurements AJ, Austin

Our group is using GitHub to track deliverables and assign issues to team members. Github will
also allow team members to view the progress of other members and ease the collaboration
process. We have also created a spreadsheet that documents whether or not a member has
completed a gate. We will use this spreadsheet and GitHub contributions to track everyone’s
process.

3.7 Expected Results and Validation
The desired outcome of the project is to implement an output function that translates circuits in
Cirq to QUIL. The output should model the current possible QASM output, but containing
information relevant to QUIL. We can validate this result with a set of tests with predetermined
results.

sdmay20-08 14

4. Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline

Figure 4: Timeline that outlines our project plan. The white boxes identify when the majority

of the work for that phase will be completed

To start the semester this year we began by researching. None of us have any background in the
subject material required for our project - quantum mechanics and quantum computing. By
September 30 we all read the lecture notes provided to us by our sponsor Victory and watched
the accompanying videos. By the end of October we will all have finished our assigned first
issues on GitHub in order to become accustomed to the Cirq framework and understand how to
use it and develop within it. By the end of November we will all have studied circuits in Cirq,
QASM, and how QUIL should be exported. At this point we will decide upon the best way to
implement the parser that will allow for exporting to happen. By December 13th, the end of the
semester, we will have all official project roles assigned specifically pertaining to implementing
the parser, and so that each member can begin their specific work over winter break. By the end
of January we will should have a good base of quil_output.py complete, and it should be almost
ready to be tested. By the end of February we will have this initial implementation of

sdmay20-08 15

quil_output.py will be finished. We will then begin thorough testing of the function to verify its
proper operation. By the end of March we should have all of the testing finished and have a large
variety of tests that verify proper implementation of the QUIL parser. These will include
functional tests, as well as speed tests and stress tests. At this point we will begin optimization
while holding the function to the same functional tests developed in the previous deliverable.
The goal of this phase will be to increase performance and potentially pass more speed and stress
tests that were not feasible in the first implementation. Optimization will be finished by the end
of April and the final product will be delivered.

4.2 Feasibility Assessment
Feasibly, this project will result in the successful python implementation within Cirq’s
framework of the translation of a circuit to QUIL. One challenge with this will be learning the
material necessary. Nobody on the team has prior experience with quantum computing or
quantum mechanics and therefore we will all need to do a lot of research. The second challenge
will be working together on a project with no clear division of work. The entire project is based
off a single GitHub issue created by our sponsor: implementing quil_output.py. The issue has not
been subdivided into smaller issues and we do not know enough from the limited research we’ve
had time for at this point to determine subissues and divide the work.

4.3 Personnel Effort Requirements

Read Lecture Notes: 8/21 - 9/30 Team members are required to read/watch
accompanying videos for 5 lectures per week.
This would translate to about an hour a day
Monday-Friday.

Complete “Good First Issues” in Cirq:
10/1 - 10/31

Varying effort is required depending on the issue
assigned and the familiarity with the style of
Cirq’s development cycle. Team members should
at least be expected to spend a few hours a week
until they have completed their issues.

Begin the design implementation of
QUIL:
11/1 - 11/30

All team members required to study the QASM
files, and bring one idea as to how we can write
the basic QUIL parser. In order to ensure how our
design will be best for Cirq, members should
continue to look into the commonalities between
Cirq and QUIL. Should spend 1 hour a day
writing code for this basic parser

sdmay20-08 16

Assign official roles and delimit tasks:
12/1 - 12/13

Since this is before finals not much effort will be
required. We will meet as a team and assign roles
once we’ve determined the structure of our parser.

Work on completing quil_output.py:
12/14 - 2/29

During this time, we will expect team members to
push code at least once a week and we will meet
every Sunday to verify everyone’s code is
working together properly. Each member should
spend 1-2 hours each day working on creating the
parser

Testing Phase: 3/1 - 3/31 Everyone will be required to write at least two
tests a week so that we can generate a large
number of quality tests.

Optimization Phase: 4/1-4/30 Effort requirements will be similar to the first
implementation phase. Members will be required
to push code once a week and we will meet to
verify optimizations still pass all the tests we
designed.

4.4 Other Resource Requirements
All team members need access to a personal linux machine or linux vm in order to do
development on the project.

4.5 Financial Requirements
There are no financial requirements for this project.

sdmay20-08 17

5. Testing and Implementation
5.1 Interface Specifications

Our project will not involve any user interfaces. Rather, we will add functionality to the backend
that processes user designed circuits. Since Cirq is a quantum computer programming language
there is no real user interface. It’s an API that allows users to write python files that describe the
circuit they would like to experiment with.

5.2 Hardware and software
There will be no hardware directly involved in our project. This makes sense since Cirq is used
to simulate hardware. There’s at least one real quantum computing chip already programmed
into Cirq for simulation. It is Google’s Bristlecone chip.

Software wise, we will be adding two files, one for testing and one for the actual program. The
file for our issue is going to be quil_output.py and the file to test our issue will be
quil_output_test.py. We will be modifying many other files that contain previously as well as
newly implemented gates in order to add our translation functions and relevant tests.

5.3 Functional Testing
Each file in cirq has a test file in its folder that shares the name with “_test” appended to the
end. This will test the full functionality of the file with the goal of getting 100% coverage
besides where there are coverage exceptions. In order to run these tests we will use the pytest
library. We will use a variety of circuits, making sure each gate is present, to test correct
translation. We will also have a test for each function that will return QUIL syntax.

5.4 Non-Functional Testing
In order to test for performance we will time the simulation of circuits. There will not be any
testing in relation to security. We will run format and lint checks to make sure our code follows
the Cirq standard. These are already implemented in the Cirq repo.

5.5 Process
This is our current process:

1. Each pull request has two members assigned to it.
2. Implement the features in that pull request

sdmay20-08 18

3. Implement relevant tests
4. Verify 100% of tests pass
5. Verify 100% of lint and format checks pass

This process will change as we move on to implementing a parser. That will entail more group
work and collaboration. All changes will be completed on one forked repository owned by a
group member.

5.6 Results
Since our group has only been working on smaller tickets, no testing in relation to our main issue
has been done. When it comes to testing for our introductory tickets, a lot of experienced failures
have been due to improper setup of the Cirq development environment, improper syntax due to
inexperience with python, and lack of knowledge when it comes to the structure of Cirq and how
different parts of it are used. For successes, there aren’t any metrics we can judge our current
ticket solutions against besides if they all pass or fail.

sdmay20-08 19

6. Closing Material

6.1 Conclusion
Thus far, our team has been working hard to gain a fundamental understanding of quantum
computing. Our sponsor, Victory, gave us lectures to read and watch. As stated prior, our
primary goals/requirements are to implement issue #2386 in the Cirq repository
(https://github.com/quantumlib/Cirq), study quantum computing and to complete smaller issues
along the way. Our plan of action is spread out over two semesters, the first semester will be
spent completing the smaller issues and learning more about quantum computing. Second
semester, we will work together to complete our primary requirement,
https://github.com/quantumlib/Cirq. Since our team has limited knowledge of quantum
computing, this plan will work very well because it will allow us to gain ground work before
attempting a difficult issue.

6.2 References
https://github.com/quantumlib/Cirq

[1] Ambainis, Andris, et al. “What Can We Do with a Quantum Computer?” Institute for
Advanced Study, www.ias.edu/ideas/2014/ambainis-quantum-computing.

[2] LaRose, R. (2019). Review of the Cirq Quantum Software Framework. [online]
Quantumcomputingreport.com. Available at:
https://quantumcomputingreport.com/scorecards/review-of-the-cirq-quantum-software-fr
amework/ [Accessed 8 Oct. 2019].

[3] Smith, Robert S., et al. “A Practical Quantum Instruction Set Architecture.” ArXiv.org, 17
Feb. 2017, https://arxiv.org/abs/1608.03355.

6.3 Appendices
Lecture Notes:

 https://www.scottaaronson.com/blog/?p=3943

Lecture Videos:

https://www.youtube.com/playlist?list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz

sdmay20-08 20

https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
https://github.com/quantumlib/Cirq
http://www.ias.edu/ideas/2014/ambainis-quantum-computing
https://www.scottaaronson.com/blog/?p=3943
https://www.youtube.com/playlist?list=PLm3J0oaFux3YL5qLskC6xQ24JpMwOAeJz

Design for export to QUIL in Cirq
To output a circuit to QUIL format in Cirq, the following call can be made:

Below is an example of printing the QUIL output in Cirq:

q0, = _make_qubits(1)
output = cirq.QuilOutput((cirq.X(q0),), (q0,))
print(output)

The print statement would output the following:

Created from Cirq
X 0

Implementation
The project will be separated into three pull requests. Each pull request will have 2 - 3 people working on them.
The pull requests will be as follows:

PR1: Implement cirq output for Standard QUIL Gates
PR2: Implement cirq output for Non-Standard Gates
PR3: Implement cirq output for Control flow and Measurements

PR1: Implement Cirq output for Standard QUIL Gates
For each Cirq gate that can be output to a standard QUIL gate, a quil representation was add to the gate.

Below is an example of the quil function for the X gate:

def _quil_(self, args, qubits):
 return args.format("X {0}", qubits[0])

Gate Conversion Rules for Standard QUIL Gates

Cirq Gate QUIL Gate Notes

Cirq.H H Hadamard gate

Cirq.X X Pauli X (PI rotation over X-axis) aka "NOT" gate

Cirq.Y Y Pauli Y (PI rotation over Y-axis)

Cirq.Z Z Pauli Z (PI rotation over Z-axis)

sdmay20-08 21

Cirq Gate QUIL Gate Notes

Cirq.RX RX Rotation around the X-axis by given angle

Cirq.RY RY Rotation around the Y-axis by given angle

Cirq.RZ RZ Rotation around the Z-axis by given angle

Cirq.S S PI/2 rotation over Z-axis (synonym for r2)

Cirq.T T PI/4 rotation over Z-axis (synonym for r4)

Cirq.CZ CZ A gate that applies a phase to the |11⟩ state of two qubits.

Cirq.FREDKIN CSWAP A controlled swap gate

Cirq.CSWAP CSWAP Controlled swap aka "Fredkin" gate

Cirq.Identity I A Gate that perform no operation on qubits.

Cirq.CX CNOT Controlled Pauli X (PI rotation over X-axis) aka "CNOT" gate

Cirq.CCX CCNOT Toffoli aka "CCNOT" gate

Cirq.TOFFOLI CCNOT Toffoli aka "CCNOT" gate

Cirq.SWAP SWAP Swaps the state of two qubits.

Cirq.ISWAP ISWAP
Rotates the |01⟩-vs-|10⟩ subspace of two qubits around its
Bloch X-axis.

Cirq.SwapPowGate PSWAP The SWAP gate, possibly raised to a power, exchanges qubits.

Criq.CZPowGate CPHASE A gate that applies a phase to the |11⟩ state of two qubits.

Cirq.TwoQubitDiagnalGate CPHASE00

Cirq.TwoQubitDiagnalGate CPHASE01

Cirq.TwoQubitDiagnalGate CPHASE10

Cirq.WaitGate WAIT

PR2: Implement cirq output for Non-Standard Gates
Non-Standard Cirq Gates

For Cirq gates that are not standard gates in QUIL, the DEFGATE keyword will be used to output a new gate in
QUIL that can be used to represent the Cirq gate. For example:

Cirq.FSimGate

DEFGATE FSIMGATE:
 1, 0 , 0 , 0
 0, cos(%theta) , -i*sin(%theta), 0
 0, -i*sin(%theta), cos(%theta) , 0
 0, 0 , 0 , exp(-i*%phi)

sdmay20-08 22

Below is a list of the Cirq gates we intend to add:

XPowGate
YPowGate
ZPowGate
IdentityGate
HPowGate
CNotPowGate
ISwapPowGate
FSimGate
ControlledGate
ZZPowGate
PhaseISwapPowGate
CCXPowGate
CCZPowGate
ThreeQubitDiagonalGate

PR3: Implement cirq output for Control flow and Measurements
QUIL keywords to be added

QUIL
Keyword

Notes

FORKED If statement on a specific qubit

DAGGER Represents the complex-conjugate transpose

CONTROLLED Takes a gate acting on a qubit and conditions it on a new qubit

WAIT
Suspends quantum computations while classical computations are performed
(Cirq.WaitGate)

RESET Brings the qubit to the zero state

MEASURE Used to measure the state of a qubit

JUMP Enables the ability to jump to different parts of the QUIL circuit

PRAGMA Comments

INCLUDE Includes another QUIL file (parses in gate and circuit definitions)

Cirq Circuits

For larger gates that can contain a _decompose_ function, QUIL's DEFCIRCUIT command will be used.

sdmay20-08 23

	Design Document v3
	quil

